Die bakterielle Zellwand erhält die Form und Unversehrtheit der einzelligen Organismen. Die Zellwandsynthese spielt beim Bakterienwachstum eine Schlüsselrolle: das Zellteilungsprotein FtsZ bildet in der Zellmitte den sogenannten Z-Ring und leitet so den Teilungsvorgang ein. Dort bildet sich eine neue Zellwand, wofür als Kernkomponente Peptidoglykan hergestellt wird. Durch diese Einschnürung entstehen so zwei identische Tochterzellen.
Leuchtende Proteine in Staphylococcus aureus unter dem Mikroskop
Das UKB-Forschungsteam um Fabian Grein und Tanja Schneider wählte zusammen mit dem Team um Ulrich Kubitscheck, Professor für Biophysikalische Chemie an der Universität Bonn, das Bakterium Staphylococcus aureus als Modellorganismus für ihre Untersuchung aus. Dabei handelt es sich um eines der gefährlichsten humanpathogenen Bakterien. Im Fokus der Untersuchung stand der Einfluss von Antibiotika, die die Peptidoglykansynthese inhibieren, auf die Zellteilung. „Wir fanden einen schnellen und starken Effekt von Oxacillin sowie der Glycopeptid-Antibiotika Vancomycin und Telavacin auf die Zellteilung. Das Zellteilungsprotein FtsZ diente hierbei als Marker und wurde von uns beobachtet“, sagt Jan-Samuel Puls, Doktorand am Institut für Pharmazeutische Mikrobiologie des UKB.
Dazu wurde FtsZ neben anderen Proteinen fluoreszenzmarkiert. Dann analysierten die Forschenden die Effekte auf einzelne lebende Bakterienzellen über die Zeit und verwendeten zudem superauflösende Mikroskopie. Sie etablierten eine automatisierte Bildanalyse für Mikroskopie-Aufnahmen, die ihnen eine schnelle Analyse aller Zellen in der untersuchten Probe erlaubte. „Staphylococcus aureus ist nur etwa einen Mikrometer groß, also ein Tausendstel Teil eines Millimeters. Das macht die Mikroskopie besonders anspruchsvoll“, sagt Dr. Fabian Grein, Nachwuchsgruppenleiter am Institut für Pharmazeutische Mikrobiologie des UKB sowie Wissenschaftler am Deutschen Zentrum für Infektionsforschung (DZIF).
Antibiotika-Effekt auf die Zellwand-Biosynthese-Maschinerie hemmt Zellteilung sofort
Das Bonner Forschungsteam fand heraus, dass die Bildung von Peptidoglykan die treibende Kraft während des gesamten Prozesses der Zellteilung ist. Bislang wurde angenommen, dass die Peptidoglykansynthese nur während eines bestimmten Teiles dieses Prozesses essenziell ist. Das Team zeigte, dass die Hemmung des Zellwandaufbaus durch Glykopeptid-Antibiotika in Staphylococcus aureus schnell und mit einem drastischen Effekt auf die Zellteilung erfolgt. Zudem klärten sie die spezielle Rolle des essenziellen Penicillin-bindenden Proteins 2 (PBP2), das die Zellwandkomponenten miteinander verknüpft, für die Zellteilung im Detail auf. Das β-Laktam-Antibiotikum Oxacillin verhindert die korrekte Lokalisierung dieses Proteins.
„Das bedeutet, dass PBP2 nicht an die Stelle gelangt, wo es gebraucht wird. Die Folge ist, dass die Zelle sich nicht teilen kann“, sagt Grein. „Wichtig ist, dass dies alles unmittelbar nach der Zugabe der Antibiotika passiert. Entscheidend sind also die ersten zellulären Effekte, die bislang nicht besonders intensiv untersucht wurden.“ Daher erhofft er sich durch die Studien-Ergebnisse mit Blick auf die alarmierende Zunahme von Antibiotika-Resistenzen weltweit ein besseres Verständnis dafür, wie genau diese Wirkstoffe auf zellulärer Ebene funktionieren, und damit einen Schlüssel für die Entwicklung neuer Antibiotika.